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The (2+1)-dimensional nonlinear Schrödinger (NLS) equation with spatially inhomogeneous nonlinearities
is investigated, which describes propagation of light in (2+1)-dimensional nonlinear optical media with
inhomogeneous nonlinearities. New types of optical modes and nonlinear effects in optical media are pre-
sented numerically. The results reveal that the regular split of beam can be obtained in (2+1)-dimensional
nonlinear optical media with inhomogeneous nonlinearities, by adjusting the guiding parameter. Further-
more, the stability of beam regular split is discussed numerically, and the results reveal that the beam
regular split is stable to the finite initial perturbations.
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During the past years, much attention in nonlinear optics
has been focused on the wave propagation in nonlinear
optical media with the transverse harmonic modulation
because of their extensive applications. Discrete spatial
solitons, as spatially localized modes of periodic modula-
tion, have been introduced and studied theoretically[1,2],
and have been observed experimentally[3]. Also a
lot of practical applications have been considered[2−11].
On the other hand, all kinds of new opportunities
are offered by the intermediate regime constituted by
continuous or quasi-continuous nonlinear media with
an imprinted transverse modulation of the refractive
index[12−17]. Moreover, the problem can be extended to
many branches of physics and applied mathematics, in-
cluding nonlinear condensed matter.

At present, the theory of the nonlinear wave propaga-
tion is developed in (1+1)-dimensional nonlinear optical
media with homogeneous nonlinearities. However, the
theoretical study for the propagation of light in (2+1)-
dimensional nonlinear optical media with spatially inho-
mogeneous nonlinearities has not been noted widely. In
fact, there have been many theoretical studies on non-
linear waves in Bose-Einstein condensates (BECs) with
spatially inhomogeneous nonlinearities[18−21]. There-
fore, the study about the propagation of light in (2+1)-
dimensional nonlinear optical media with spatially in-
homogeneous nonlinearities could have important conse-
quences for the further development of nonlinear optics
and for the other branches of physics.

In this letter, we investigate (2+1)-dimensional nonlin-
ear Schrödinger (NLS) equation with spatially inhomoge-
neous nonlinearities, which describes propagation of light
in (2+1)-dimensional nonlinear optical media with inho-
mogeneous nonlinearities, and new types of optical modes
and nonlinear effects in optical media are presented nu-
merically. Furthermore, these results are useful not only
in some experiments of intentional problems, but also in
the possible explanation of some interesting phenomena.

We start the analysis in the electromagnetic waves

propagating along the z direction in (2+1)-dimensional
waveguide with transverse modulation of the linear re-
fractive index, and focus on the inhomogeneous Kerr-
type nonlinearity. The problem can be described in two
transverse dimensions by the following NLS equation:

iqz +
1

2
(qxx + qyy) + g(x, y) |q|

2
q + pR(x, y)q = 0, (1)

where q(x, y, z) = (Ldif/Lnl)
1/2A(x, y, z)I

−1/2
0 , and

A(x, y, z) is the complex envelope of the electrical field.
Taking into account Gaussian optical beam from laser
devices, here we take q(x, y, 0) = exp(−x2/2 − y2/2). I0

is the input intensity, x = X/r0, y = Y/r0, r0 is the
input beam width unit, z = Z/Ldif , Ldif = n0ωr2

0/c,
Lnl = 2c/ωn2I0, ω is the frequency, and n2 is of the order
of the nonlinear correction to the refractive index because
of the Kerr effect. p = Ldif/Lref represents the guiding
parameter, Lref = c/(δnω), and δn denotes the refractive
index modulation unit, which is small compared with the
unperturbed index n0. The weak modulation of linear re-
fractive index in the transverse direction is defined by the
real function R(x, y). Here we consider the continuous,
separable modulation[22]

R(x, y) = cos2(πx/d) + cos2(πy/d), (2)

where the grid constant d = 2. g(x, y) describes the
spatial modulation of the nonlinearity. In spite of many
possibilities, we discuss only three examples of interest
for the applications.

1) g(x, y) = 1. In this case, nonlinear optical media is
of spatially homogeneous nonlinearity. We consider the
case in order to compare it with the inhomogeneous case.
Figure 1 presents the propagation of light for different
values of parameter p. It is obvious that the value of
the guiding parameter p has a crucial influence on our
results. In fact, the guiding parameter p denotes mod-
ulation depth of the refractive index. For different p,
there exists different lattices due to different modula-
tion depths. We do not have to vary the grid constant
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d, since the propagation Eq. (1) can be scaled in such
a way that this is equivalent to changing p. For small
p (corresponding to lower modulation depth), we can
see that the input light can propagate in the stationary
mode in this nonlinear system as shown in Fig. 1(b). We
also find that the beam width decreases compared with
the input beam, however, it could not influence the main
character of the propagation. This indicates a complete
formation of stable, slightly oscillating two-dimensional
(2D) soliton mode. If the depth of the lattice is higher
(for greater values of p), simulations show that this is in-
deed the case that the propagation of input beam should
become unstable. In this sense, the stable 2D soliton
depends on modulation depth relative to the value of p.

2) g(x, y) = − exp(−3x2 − 3y2). In this case, g(x, y)
describes a Gaussian nonlinearity such as the one gen-
erated by controlling the Feschbach resonances optically
using a Gaussian beam[23−25]. The propagation of light
is depicted in Fig.2. From the plot, we find that the
propagation of light is various for different values of pa-
rameter p. If setting p = 4.2, one can clearly see that
beam split occurs regularly, as shown in Fig. 2(b). Com-
pared to Fig. 1(b), this is a new type of optical mode. In
order to investigate this in detail, we consider the case
3).

3) g(x, y) = −g0{1 − 3α[cos(wx) + cos(ωy)]}. In this
case, the nonlinearity is harmonic. Beam split also occurs
regularly when p = 4.2 as shown in Fig. 3(b). However,
split law is different compared with Fig. 2(b).

Thus, in (2+1)-dimensional nonlinear optical media
with inhomogeneous nonlinearities, we could adjust the
parameter p to obtain beam regular split. As a mat-
ter of fact, the 2D regular split patterns are caused by
lower modulation depth (for small p) for an effective pe-
riodic potential with inhomogeneous nonlinearities. And
the growth of modulation depth (for increasing p) could
strongly affect the regular split patterns. This leads to
the conclusion that, lower lattice depth is necessary in
order to stabilize beam regular split. We should expect
dynamics similar to that of nonlinear development of the
modulation instability (MI) of a continuous-wave (CW)

Fig. 1. Contour plots of light wave propagation. (a) p = 13.6;
(b) p = 4.2; (c) p = 27.2.

Fig. 2. Contour plots of light wave propagation. (a) p = 13.6;
(b) p = 4.2; (c) p = 27.2.

Fig. 3. Contour plots of light wave propagation for g0 = 1,
ω = 1, and α = 0.05. (a) p = 13.6; (b) p = 4.2; (c) p = 27.2.

state, seeded by an infinitesimal periodic perturbation.
In MI, the instability growth results in formation of a
periodic chain of solitons on a residual background. For
applications, one needs soliton trains without the CW
background. In contrast to the MI case, beams splited
here are without the CW background. Moreover, weak
modulation depth plays an important role for beam regu-
lar split. This might imply that the linear guided modes
are excited for weak modulation depth. For large number
of waveguides, propogation constant of the beam is close
to that of the linear guided mode. That means, beam
regular split also drastically depends on whether the lin-
ear guided mode has been excited. Again, when beam
regular split is excited, a nonlinear transfer of beam en-
ergies from the initially fixed beams usually takes place.

Such an interesting nonlinear effect, actually, is the
result of perfect balance among the diffraction, the re-
fraction, spatially inhomogeneous nonlinearities, and lin-
ear continuous modulation. With the unique property,



March 10, 2008 / Vol. 6, No. 3 / CHINESE OPTICS LETTERS 213

some complicated devices, to which a lot of attention has
been currently devoted, may be further developed in the
nonlinear optical media. In fact, Ref. [26] has reported
on the first experimental observation of 2D multicolored
transverse arrays in a quadratic nonlinear medium under
the pump of two crossly overlapped femtosecond beams.
Certainly, optical mode presented in our work is symmet-
ric mode. At this point, the effect could also support the
development of the theory about similar problem men-
tioned above in other physical fields, even other scientific
fields, such as biology.

We have also made numerical simulations to determine
the stability of the beam regular split in the presence
of perturbations and the violation of parameter profiles.
The results reveal that the beam regular split is not
very sensitive to the initial perturbations, such as small
amounts of amplitude perturbations, indicating the sta-
bility of the beam regular split.

On the other hand, Figs. 1(a), 1(c), 2(a), 2(c), 3(a) and
3(c) show more complicated physical phenomena, which
will be accompanied by more physical discussion.

In summary, we have considered (2+1)-dimensional
nonlinear Schrödinger (NLS) equation with spatially in-
homogeneous nonlinearities, which describes propagation
of light in (2+1)-dimensional nonlinear optical media
with inhomogeneous nonlinearities, and new types of op-
tical modes and nonlinear effects in optical media have
been presented numerically. The results reveal that the
beam regular split can be obtained in (2+1)-dimensional
nonlinear optical media with inhomogeneous nonlinear-
ities, by adjusting the guiding parameter. It is worth
noting that these results are useful not only for dealing
with physical problems, but also for dealing with other
problems, such as biological problems. Finally, the nu-
merical simulation shows that the beam regular split is
still stable in the presence of finite perturbations and the
violation of parameter profiles. We emphasize that all
the results obtained in this work provide a totally new
insight into the problems. Furthermore, we think that
the results could be obtained by other methods, such as
equivalent-particle approximation method[27].
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ence Foundation of China under Grant No. 60244006. R.
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